Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations.

نویسندگان

  • Francesca Girolami
  • Carolyn Y Ho
  • Christopher Semsarian
  • Massimo Baldi
  • Melissa L Will
  • Katia Baldini
  • Francesca Torricelli
  • Laura Yeates
  • Franco Cecchi
  • Michael J Ackerman
  • Iacopo Olivotto
چکیده

OBJECTIVES The aim of this study was to describe the clinical profile associated with triple sarcomere gene mutations in a large hypertrophic cardiomyopathy (HCM) cohort. BACKGROUND In patients with HCM, double or compound sarcomere gene mutation heterozygosity might be associated with earlier disease onset and more severe outcome. The occurrence of triple mutations has not been reported. METHODS A total of 488 unrelated index HCM patients underwent screening for myofilament gene mutations by direct deoxyribonucleic acid sequencing of 8 genes, including myosin binding protein C (MYBPC3), beta-myosin heavy chain (MYH7), regulatory and essential light chains (MYL2, MYL3), troponin-T (TNNT2), troponin-I (TNNI3), alpha-tropomyosin (TPM1), and actin (ACTC). RESULTS Of the 488 index patients, 4 (0.8%) harbored triple mutations, as follows: MYH7-R869H, MYBPC3-E258K, and TNNI3-A86fs in a 32-year-old woman; MYH7-R723C, MYH7-E1455X, and MYBPC3-E165D in a 46-year old man; MYH7-R869H, MYBPC3-K1065fs, and MYBPC3-P371R in a 45-year old woman; and MYH7-R1079Q, MYBPC3-Q969X, and MYBPC3-R668H in a 50-year old woman. One had a history of resuscitated cardiac arrest, and 3 had significant risk factors for sudden cardiac death, prompting the insertion of an implantable cardioverter-defibrillator in all, with appropriate shocks in 2 patients. Moreover, 3 of 4 patients had a severe phenotype with progression to end-stage HCM by the fourth decade, requiring cardiac transplantation (n=1) or biventricular pacing (n=2). The fourth patient, however, had clinically mild disease. CONCLUSIONS Hypertrophic cardiomyopathy caused by triple sarcomere gene mutations was rare but conferred a remarkably increased risk of end-stage progression and ventricular arrhythmias, supporting an association between multiple sarcomere defects and adverse outcome. Comprehensive genetic testing might provide important insights to risk stratification and potentially indicate the need for differential surveillance strategies based on genotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...

متن کامل

Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly.

BACKGROUND Hypertrophic cardiomyopathy, a familial myocardial condition caused by sarcomere protein mutations, is usually recognized by early adulthood. Hypertrophic cardiomyopathy of the elderly has similar clinical features but, notably, a later age of onset and noncontributory family history. Causes of elderly-onset hypertrophic cardiomyopathy are unknown. METHODS AND RESULTS Eighteen wome...

متن کامل

Glycogen storage diseases presenting as hypertrophic cardiomyopathy.

BACKGROUND Unexplained left ventricular hypertrophy often prompts the diagnosis of hypertrophic cardiomyopathy, a sarcomere-protein gene disorder. Because mutations in the gene for AMP-activated protein kinase gamma2 (PRKAG2) cause an accumulation of cardiac glycogen and left ventricular hypertrophy that mimics hypertrophic cardiomyopathy, we hypothesized that hypertrophic cardiomyopathy might ...

متن کامل

Gene mutations in apical hypertrophic cardiomyopathy.

BACKGROUND Nonobstructive hypertrophy localized to the cardiac apex is an uncommon morphological variant of hypertrophic cardiomyopathy (HCM) that often is further distinguished by distinct giant negative T waves and a benign clinical course. The genetic relationship between HCM with typical hypertrophic morphology versus isolated apical hypertrophy is incompletely understood. METHODS AND RES...

متن کامل

Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy.

Mutations in PRKAG2, the gene for the gamma 2 regulatory subunit of AMP-activated protein kinase, cause cardiac hypertrophy and electrophysiologic abnormalities, particularly preexcitation (Wolff-Parkinson-White syndrome) and atrioventricular conduction block. To understand the mechanisms by which PRKAG2 defects cause disease, we defined novel mutations, characterized the associated cardiac his...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American College of Cardiology

دوره 55 14  شماره 

صفحات  -

تاریخ انتشار 2010